Table of Contents

Aquatic Organisms ... 2

Bacteria .. 3

Cancer ... 5

Dendritic Cells .. 7

Drosophila Cells .. 11

Fluorescent Proteins .. 13

High-Throughput Screening 16

MHC Multimer Assays ... 18

Stem Cells .. 20

T- and B-Cells ... 24
Aquatic microorganisms are gaining scientific relevance as model systems, ecological indicators, and sources of novel genetic material. Since these organisms occur naturally in suspension and contain chlorophyll, phycoerythrin and other autofluorescent photosynthetic pigments, they are ideal candidates for flow cytometry. The CyAn ADP High-Performance Analyzer and the MoFlo High-Performance Cell Sorter excel at resolving and isolating aquatic microorganisms ranging from submicron bacteria to large dinoflagellates.

MoFlo

Diversa

Max Planck Institute

University of Georgia

University of Innsbruck

Bacteria

Bacteria have broad scientific relevance in today’s research laboratory. Whether they are of interest for traditional microbiology, as a system for high-throughput screening, or as a vehicle for gene expression studies, their unique characteristics make them well suited for study by flow cytometry. With superior resolution for small particles, the CyAn ADP High-Performance Analyzer and the MoFlo High-Performance Cell Sorter offer fast, versatile, high-resolution platforms for evaluating and manipulating bacteria, viruses, fungi, protists, and other microorganisms.

CyAn ADP and MoFlo

University of Georgia

CyAn ADP

Colorado State University

MoFlo

Brigham and Women’s Hospital

Centre for Environmental Research, Leipzig-Halle

Georg-August-University

Bacteria continued

Georg-August University

Max Planck Institute

Stanford University

University of Georgia

University of Illinois, Urbana

Although cancer, an extremely complex disease process involving genetic, environmental and behavioral factors, can stem from a vast range of cell types, it displays the common characteristic of uncontrolled cell division resulting in abnormal tissue growth. By enabling researchers to obtain specific cell cycle, phenotypic, and functional information about the mechanism in which cells become malignant and the body’s response, the CyAn ADP High-Performance Analyzer and the MoFlo High-Performance Cell Sorter ultimately contribute to the development of cutting-edge cancer treatments and novel vaccines.

Cancer

CyAn ADP
ARNAS Civico-Benfratelli, Palermo

Northwestern University Medical School

University of Pennsylvania

MoFlo
Baylor College of Medicine

Commissariat à l’Energie Atomique

City of Hope National Medical Center

Cancer continued

Harvard Medical School

Institut Pasteur

Max Planck Institute

Technical University of Munich

University of Texas MD Anderson Cancer Center

Washington University School of Medicine

Ontario Cancer Institute

Sanquin Research at CLB, Amsterdam

University of California, San Francisco

CyAn ADP
Children’s Hospital of Philadelphia

University of Colorado Salt Lake City

Wistar Institute

MoFlo
Amen

Basel Institute for Immunology

CellTech

Dendritic Cells
Dendritic cells — the most potent antigen-presenting cells in the immune system — typically comprise less than 2% of lymphoid organs. The CyAn ADP High-Performance Analyzer rapidly characterizes this complex population and the MoFlo High-Performance Cell Sorter quickly and accurately purifies these rare cells, providing a functional end product for use in further investigations.
Dental Cells continued

Dana-Farber Cancer Institute

Edward Jenner Institute

Institut Pasteur

Ludwig Institute for Cancer Research, Victoria

Technological University of Munich

Memorial Sloan-Kettering Cancer Center

MoFlo and CyAn Selected References

University of Chicago

University of North Carolina, Chapel Hill

Walter and Eliza Hall Institute

MoFlo and CyAn Selected References
Drosophila Cells

Drosophila continues to be the organism of choice for many at the forefront of genomics and proteomics research. Evolutionary conservation and ease of genetic manipulation have made this organism an attractive model for the study of eukaryotic development mechanisms. With their superior resolution and multicolor capability, the CyAn ADP High-Performance Analyzer and the MoFlo High-Performance Cell Sorter are uniquely suited as tools for the study of complex biological processes.

MoFlo

European Molecular Biology Laboratory

Massachusetts General Hospital

Massachusetts Institute of Technology

Stanford University School of Medicine

University of California, Irvine

University of North Carolina, Chapel Hill

Fluorescent Proteins

In the rapidly evolving proteomics era, applications for fluorescent proteins, such as CFP, GFP, YFP and BFP continue to grow. Whether as simple indicators of gene expression levels or as tools in fluorescence resonance energy transfer (FRET), the CyAn ADP High-Performance Analyzer and the MoFlo High-Performance Cell Sorter are ideal platforms for detecting these proteins and isolating cells with desired expression patterns.

CyAn ADP

Trudeau Institute

MoFlo

Aaron Diamond AIDS Research Center

Albert Einstein College of Medicine

Children’s Hospital, Boston

Dana-Farber Cancer Institute

Fluorescent Proteins continued

Dana-Farber Cancer Institute

John Hopkins University

Massachusetts General Hospital

Massachusetts Institute of Technology

Medical Research Council

Mt. Sinai School of Medicine

National Institutes of Health

National Jewish Medical and Research Center

Oklahoma Medical Research Foundation

Ontario Cancer Institute

Picol Pharmaceuticals

St. Jude Children’s Research Hospital

University of California, San Francisco

University of Chicago

University of North Carolina, Chapel Hill

Washington University School of Medicine
High-Throughput Screening

Interest is growing in the use of flow cytometers to screen cell- or bead-based combinatorial libraries. 1-3 Increasingly, flow cytometric assays are used to detect molecules that bind to a target protein in vitro or exhibit a particular activity in a cell-based assay. Flow cytometry also enables screening of protein libraries expressed in cells or displayed on the surface of bacteria or beads. A flow cytometer, for instance, can detect modulation of a signal transduction pathway by a particular small molecule and identify proteins with a particular binding specificity, enzymatic activity, expression level, and stability. The CyAn ADP High-Performance Analyzer and the MoFlo High-Performance Cell Sorter are finding wide application in this arena.

CyAn ADP

Trudeau Institute

MoFlo

Diversa

Georg-August-University

Lynn Therapeutics

Massachusetts Institute of Technology

National Jewish Medical and Research Center

Rigel Pharmaceuticals

University of Georgia

University of North Carolina, Chapel Hill

University of Queensland

University of Texas, Austin

University of Zurich

Stanford University

MoFlo and CyAn Selected References

MoFlo and CyAn Multimer Assays

CyAn ADP and MoFlo

Memorial Sloan-Kettering Cancer Center

Technical University of Munich

University of Pittsburgh School of Medicine

CyAn ADP

Trudeau Institute

MoFlo

Basel Institute for Immunology

Harvard Medical School

Memorial Sloan-Kettering Cancer Center

New York University School of Medicine

St. Jude Children's Research Hospital

University of Pittsburgh School of Medicine

South Carolina Cancer Center

University of California, Davis

Memorial Sloan-Kettering Cancer Center

University of Pennsylvania School of Medicine

CyAn ADP and MoFlo
University of Pittsburgh School of Medicine

CyAn ADP
John Radcliffe Hospital

Oxford University

University of Pittsburgh School of Medicine

University of York

MoFlo
Basel Institute for Immunology

Baylor College of Medicine

University of York

European Molecular Biology Laboratory

Harvard University

Haukeland University Hospital

European Molecular Biology Laboratory

Harvard University

Haukeland University Hospital

Otawa Health Research Institute

Roger Williams Medical Center

Stanford University School of Medicine

Stowers Institute for Medical Research

University of California, Davis

University of Cambridge

University of Colorado Health Sciences Center

University of Freiburg Medical Center

University of Massachusetts Medical School

Stowers Institute for Medical Research

University of California, Davis

University of Cambridge

University of Colorado Health Sciences Center

University of Freiburg Medical Center

University of Massachusetts Medical School

Stowers Institute for Medical Research

University of California, Davis

University of Cambridge
T- and B-cells

Classic subjects for flow cytometric analysis, T and B lymphocytes play a central role in the function of the immune system. With their powerful and adaptive platforms, the CyAn ADP High-Performance Analyzer and the MoFlo High-Performance Cell Sorter enable efficient multiparametric identification and isolation of the almost infinitely number of subsets of these and other immune cell types, revealing the complexities of cellular and humoral immune response.

CyAn ADP and MoFlo

Memorial Sloan-Kettering Cancer Center

National Jewish Medical and Research Center

University of Georgia

University of California San Francisco School of Medicine

CyAn ADP

John Radcliffe Hospital

Memorial Sloan-Kettering Cancer Center

University of Georgia

University of California San Francisco School of Medicine

MoFlo

John Radcliffe Hospital

Memorial Sloan-Kettering Cancer Center

University of Georgia

University of California San Francisco School of Medicine

MoFlo

John Radcliffe Hospital

Memorial Sloan-Kettering Cancer Center

University of Georgia

University of California San Francisco School of Medicine

MoFlo

John Radcliffe Hospital

Memorial Sloan-Kettering Cancer Center

University of Georgia

University of California San Francisco School of Medicine

T- and B-cells continued

University of Alabama, Birmingham

University of California, San Francisco

University of Pennsylvania Cancer Center

Washington University School of Medicine